

Answer all the questions below then check your answers

1 Calculate the relative formula mass and the \% composition of each element present in each of the following compounds.

Compound	molecular Formula	Mr_{r}	\% of each element present
ethane	$\mathrm{C}_{2} \mathrm{H}_{4}$		
magnesium chloride	MgCl_{2}		
sodium fluoride	NaF		
potassium sulphate	$\mathrm{K}_{2} \mathrm{SO}_{4}$		
sucrose	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$		
calcium nitrate	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$		

2 In an experiment 16 g g of iron oxide was reduced to give 11.2 g of iron. Calculate the formula of this oxide of iron.

3 Fred reacted 5.62 g of cadmium metal with iodine. He produced 11.93 g of cadmium iodide. Calculate the formula of cadmium iodide.

4 Calculate the percentage mass of:
a sodium in sodium chloride (NaCl)
b lithium in lithium oxide $\left(\mathrm{Li}_{2} \mathrm{O}\right)$
c lead in lead (III) chloride $\left(\mathrm{PbCl}_{3}\right)$
d calcium in calcium hydroxide. note hydroxide is $\mathrm{Ca}(\mathrm{OH})_{2}$

Additional questions:

1. Calculate the percentage composition by mass of oxygen in water $\left(\mathrm{H}_{2} \mathrm{O}\right)$.
2. What is the percentage composition by mass of sodium in sodium chloride (NaCl)?
3. Calculate the percentage composition by mass of carbon in calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$.

Practice Questions (with answers hidden, try them yourself!)

4. What is the percentage composition by mass of nitrogen in ammonium nitrate ($\mathrm{NH}_{4} \mathrm{NO}_{3}$)? Answer: 35\%
5. Find the percentage composition by mass of hydrogen in methane $\left(\mathrm{CH}_{4}\right)$. Answer: 25\%
6. A compound has the formula $X_{2} O_{3}$. If the percentage composition by mass of X is 70\%, what is the element X ? (Hint: Use the periodic table) Answer: Iron (Fe) www.science-revision.co.uk

Answers

1 Calculate the relative formula mass and the \% composition of each element present in each of the following compounds.

Compound	molecular Formula	M_{r}	\% by mass of each element present
ethane	$\mathrm{C}_{2} \mathrm{H}_{4}$	28	$\%$ carbon $=24 / 28 \times$ $100 \%=86 \%$ $\%$ hydrogen $=4 / 28 \times$ $100 \%=14 \%$
magnesium chloride	MgCl_{2}	95	$\%$ magnesium $=24 / 95 \times$ $100 \%=25 \%$
			10 chlorine $=71 / 95 \times$ $100 \%=75 \%$
sodium fluoride	NaF		42
potassium			
sulphate			

sucrose	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$	318	$\%$ carbon $=120 / 318 \times$ $100 \%=38 \%$ $\%$ hydrogen $=22 / 318 \times$ $100 \%=7 \%$ $\%$ oxygen $=176 / 318 \times$ $100 \%=55 \%$
calcium nitrate	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	164	$\%$ calcium $=40 / 164 \times$ $100 \%=24 \%$ $\%$ nitrogen $=28 / 164 \times$ $100 \%=17 \%$ $\%$ oxygen $=96 / 164 \times$ $100 \%=58 \%$
			\begin{tabular}{l}
\end{tabular}			

2 In an experiment 16 g of iron oxide was reduced to give 11.2 g of iron. Calculate the formula of this oxide of iron.
A_{r} of iron is 56. Ar of oxygen is 16.
Number of moles iron present $=11.2 / 56=0.2$ moles
Mass of oxygen is $16 \mathrm{~g}-11.2 \mathrm{~g}$ of iron $=4.8 \mathrm{~g}$ of oxygen.
Number of moles of oxygen present $=4.8 / 16=0.3$ moles
Ratio of iron to oxygen is 0.2:0.3 or simply 2:3, so formula is $\mathrm{Fe}_{2} \mathrm{O}_{3}$

3 Fred reacted 5.62 g of cadmium metal with iodine. He produced 11.93 g of cadmium iodide. Calculate the formula of cadmium iodide.
A_{r} of cadmium is 112. Ar of iodine is 127.
Number of moles of cadmium $=5.62 \mathrm{~g} / 112=0.05$ moles
Mass of iodine in compound is 11.93-5.62 $9=6.31 \mathrm{~g}$
Number of moles of iodine $=6.31 / 127=0.05$
Mole ratio of cadmium to iodine is 0.05:0.05 or simply 1:1
So formula is CdI

4 Calculate the percentage mass of:
Use the periodic table to find the A_{r} of each element to calculate the M_{r} for the compounds.
a sodium in sodium chloride (NaCl)
M_{r} of sodium chloride is 58.5
$\%$ sodium $=23 / 58.5 \times 100 \%=39 \%$
$\%$ fluorine $=19 / 42 \times 100 \%=61 \%$

6 lithium in lithium oxide $\left(\mathrm{Li}_{2} \mathrm{O}\right)$
M_{r} of lithium oxide is 30
$\%$ lithium $=14 / 30 \times 100 \%=46 \%$
$\%$ oxygen $=16 / 30 \times 100 \%=53 \%$
c lead in lead (III) chloride (PbCl_{3})
M_{r} of lead chloride is 313.5
$\%$ lead $=207 / 313.5 \times 100 \%=66 \%$
$\%$ fluorine $=19 / 42 \times 100 \%=34 \%$
d calcium in calcium hydroxide. note hydroxide is $\mathrm{Ca}(\mathrm{OH})_{2}$
M_{r} of calcium hydroxide is 74
$\%$ calcium $=40 / 74 \times 100 \%=54 \%$
$\%$ oxygen $=32 / 74 \times 100 \%=43 \%$
$\%$ hydrogen $=2 / 74 \times 100 \%=3 \%$

Additional questions- answers:

1. Calculate the percentage composition by mass of oxygen in water $\left(\mathrm{H}_{2} \mathrm{O}\right)$.
2. Formula mass of $\mathrm{H}_{2} \mathrm{O}:(2 \times 1)+16=18$
3. Mass of oxygen in $\mathrm{H}_{2} \mathrm{O}: 16$
4. Percentage of oxygen: $(16 / 18) \times 100 \%=88.9 \%$
5. What is the percentage composition by mass of sodium in sodium chloride (NaCl)?
6. Formula mass of $\mathrm{NaCl}: 23+35.5=58.5$
7. Mass of sodium in $\mathrm{NaCl}: 23$
8. Percentage of sodium: $(23 / 58.5) \times 100 \%=39.3 \%$
9. Calculate the percentage composition by mass of carbon in calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$.
10. Formula mass of $\mathrm{CaCO}_{3}: 40+12+(3 \times 16)=100$
11. Mass of carbon in $\mathrm{CaCO}_{3}: 12$
12. Percentage of carbon: $(12 / 100) \times 100 \%=12 \%$

Practice Questions (with answers hidden, try them yourself!)
4. What is the percentage composition by mass of nitrogen in ammonium nitrate ($\mathrm{NH}_{4} \mathrm{NO}_{3}$)? Answer: 35\%
5. Find the percentage composition by mass of hydrogen in methane $\left(\mathrm{CH}_{4}\right)$. Answer: 25\%
6. A compound has the formula $X_{2} O_{3}$. If the percentage composition by mass of X is 70\%, what is the element X? (Hint: Use the periodic table) Answer: Iron (Fe)

